Coherent estimates of genetic effects with missing information
نویسندگان
چکیده
Genetic effect estimates for loci detected in quantitative trait locus (QTL) mapping experiments depend upon two factors. First, they are parameterizations of the genotypic values determined by the model of genetic effects. Second, they are consequently also affected by the regression method used to estimate the genotypic values from the observed marker genotypes and phenotypes. There are two common causes for marker-genotype data to be incomplete in those experiments—missing marker-genotypes and within interval mapping. Different regression methods tend to differ in how this missing information is represented and handled. In this communication we explain why the estimates of genetic effects of QTL obtained using standard regression methods are not coherent with the model of genetic effects and indeed show intrinsic inconsistencies when there is incomplete genotype information. We then describe the interval mapping by imputations (IMI) regression method and prove that it overcomes those problems. A numerical example is used to illustrate the use of IMI and the consequences of using current methods of choice. IMI enables researchers to obtain estimates of genetic effects that are coherent with the model of genetic effects used, despite incomplete genotype information. Furthermore, because IMI allows orthogonal estimation of genetic effects, it shows potential performance advantages for being implemented in QTL mapping tools.
منابع مشابه
Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data
A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...
متن کاملStage Life Testing with Missing Stage Information - an EM-Algorithm Approach
We consider a stage life testing model and assume that the information at which levels the failures occurred is not available. In order to find estimates for the lifetime distribution parameters, we propose an EM-algorithm approach which interprets the lack of knowledge about the stages as missing information. Furthermore, we illustrate the implementation difficulties caused by an increasing nu...
متن کاملEstimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models
The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...
متن کاملEstimation of genetic parameters of litter size in Moghani sheep using threshold model via Bayesian approach
This study was conducted to estimate the genetic parameters of litter size (LS) in Moghani sheep using threshold model via Bayesian approach. The data originated from the Jafar-Abad Station of Ardabil province, Iran, and included 9698 lactation records of 4977 ewes with lambings from 1995 until 2010. The pedigree file consisted of data on animals born from 1987 to 2010. The significance of fixe...
متن کاملEstimation of genetic parameters for body weight traits in Baluchi sheep
Genetic parameters for birth weight (BW), weaning weight (WW), 6 months weight (6MW), 9 months weight (9MW) and yearling weight (YW) in Baluchi sheep were estimated using data collected during a 26-year period (1984-2010). Estimates of (co)variance components were obtained by REML procedures by fitting a linear mixed animal model. Significant random effects for each trait were explored by fitti...
متن کامل